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ABSTRACT

Let P be a conservative and ergodic Markov operator on L;(X, X, m).
We give a sufficient condition for the existence of a decomposition 4;1 X
such that for 0 < f, geL(A4;) and any two probability measures x# and v
weaker than m

N N
X (Phgy [ T (uP"f> converges to {4,8>/{4,f),
n=1 n=1

where J is the o-finite invariant measure (which necessarily exists). Processes
recurrent in the sense of Harris are shown to have this decomposition, and
an analytic proof of the convergence of

3 P [ T P1L0) to AAAB)

n=

is deduced for such processes.

1. Definitions and notations

Let (X, Z, m) be a measure space with m(X) = 1. A Markov process is a positive
contraction P on L,(X,Z,m). P will be written to the right of its variable, while
its adjoint, acting on L (X,Z,m), will be denoted by P and written to the left
of its variable. Thus (uP,f> = {u,Pf) for feL, , uelL,.

By the Radon-Nikodym theorem P also acts on the Banach space of finite
signed measures absolutely continuous with respect to m:uP(4) = [P1,du for
u < m,AecZ, The same formula defines uP for a o-finite positive measure u <€ m.
A positive o-finite measure p is invariant if pP = p.

o]

The process is conservative if m(4) > 0 implies X T P"1(x) = o a.e. on 4.

* This paper is a part of the author’s Ph.D. thesis prepared at the Hebrew University of
Jerusalem under the direction of Professor S. R. Foguel, to whom the author is grateful for his
helpful advice and kind encouragement.
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The process is conservative and ergodic if m(A4) > 0 implies X 2. P"1 (x) = o
ae.

If AeX, we define the operator T, by uT,(x) = u(x)1(x), so T,f(x)=
1(x)f(x) and uT,(B) = u(AN B).

The complement of a set 4 is denoted by 4’.

2. Ratio limit theorems

TBEOREM 2.1. Let P be a conservative and ergodic Markov process, and let
AeX be with m(A) > 0. A necessary and sufficient condition for the convergence
limy,, XY, vP(A)/Z - nP"(4) = 1 for any two probability measures v and
n < mis: There exists a probability measure p < m such that

N N
timsup ” Z P / Z 1P'(4) ” <.

ProoF: Necessity: Take any fixed probability measure p. X 7=y pP"(4) = o
by ergodicity, so for N N, X.°;uP"(4)>0. Define, for N 2 N,
fu(x) = TV P (x)] 5= uP%(4). The sequence {fy:N = N} defines a
sequence of linear functionals on Li(X,Z,m), since fye L, (X,%,m). Every
signed measure < m is the difference of two positive measures < m, so by the
given convergence, fy is weak-* convergent to 1, hence {| fy|.: N = No} is
bounded.

Sufficiency: For every v < m, the condition implies { X J_,vP"(4)] X} ;uP"(4):
N = N,} is bounded.

Take a fixed probability measure vo, and let {N;} be any sequence such that

TN voP"(4)] YL, uP"(A) converges. We have to show that the limit is one.

We define on L,(m), identified with the space of finite signed measures <m,

a positive linear functional L by a Banach limit

N; Nj
L) = LIM { 2w = uP"(A)}.
n=1 n=
Ny Ny
L(vP) =LIM { 3 vPH(4) 21 uP"(A)}
n=1 n=

Ny Ny N;
= LIM { > vP4) [ pP"(A)}+LIM{[vPNf“(A)—vP(A)] leP"(A)}
zn=1 a=1 n=

= L(v).
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The last term is zero since X ., uP%(4) = c0 and Banach limits preserve
limits.

But L(v) = [ gdv for some ge L, (X,X,m), and L(vP) = L(v) implies Pg = g.
The process is conservative and ergodic, hence g is a constant [1, theorem IILA].
g = [gdp =L =1, hence L(v) = [dv = v(X). Thus

Ny N.
1 = vy(X) = L(v,) = lim X v,P"(4) / 3 uP"(A).
n=1

N;j—w n=1

Since this holds for every convergent subsequence, the sequence itself must con-
verge to one.

RemaRrk. The conditions on A in the above theorem do not imply the existence
of a o-finite invariant measure: take a process with no such measure and 4 = X.

LemMa 2.1. If BeX, then for n = 1

n—1

P"= X (PTy)Y 'PT,P" 7 + (PT,)" " 'P.
j=1

j=
ProoF: An easy induction. For n = 1 the sum is zero, and P = (PTg.)°P.
Using the induction hypothesis and PT; 4+ PTp. = P we get

n=-1
P! = P"P = I (PTy) 'PTyP""' 77 + (PTy)' '(PTy + PT,)P
j=1

j=

Il
M=

(PT3) " 'PT,P"™ ™7 + (PTy)"P.
=1

7

LemMMA 2.2. If BeX, thenfor n =2 1
2 (PT)"P'lp < n.
m=0

Proor: For n =1 we have

N N
T (PTe)™Ply = X (PT)"PU—-T 1) S 1-(PT)"""1 < 1
m=0 m=0

and letting N — co the result follows. Continuing by induction

N

N
(PTg)"P 1y = X (PTy)"PTyP'1, +
=0 m=0

m=

N
+ X (PTy)"PT4P'1; < n+1.
=0

m
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The first term is less than n by the induction hypothesis, the second less than 1
since TP"1; < 1, and by our proof for n = 1. Letting N — oo the result follows.

Lemma 23. If A,BeX, m(A)>0, m(B)>0 and for some K>0 and
«>0 TK1p, > al, then X 2., (PT)"Pl, £ K(K 4 1))2x.

Proor:

N N K-1
¥ (PTy)"Pl, < o' X (PTz)"P X P'1,
m=0 n=0

m=0

X N K
=a ! T T(PT)"Ply<a™!Xn=KK+1)2.
=1

n=1 m=0 n
The last inequality is by Lemma 2.2. Let N — oo to deduce the Lemma.

THEOREM 2.2, Let P be an ergodic and conservative Markov process and
AeZ with m(4) > 0. If there exist a probability measure u < m, an integer
K>0, an >0 and 0 <e <1 such that

K—-1

uB)ze = X P'ly=al,
n=0

then for every two probability measures v and n

N N
lim X vP(4)/ X nP'(4)=1.
N-own=1 n=1
PrROOF: We have to show that g and A satisfy the condition of Theorem 2.1,
Define & = ¢/(1—¢), hence 8>0. We denote fy= X~ ,P"1,, and
Sy = - 1uP'(4) = ffzvdﬂ-
The process is conservative and ergodic, hence Sy 1 0. We deal with N = N,
such that Sy > 0. Define By = {x:fy(x) < (1 + 6)Sy}.

Sn J fvdp Z J;_B Sadp = (1 + 6)Syu(X — By)

(1 + 9)Sy[1 — u(By)]-
Dividing by Sy > 0 and solving yields
uBy) = 1—1)(1+8) =5/(1+3) = ¢.
For short we shall denote By by B. Hence X%_LP"; = al, by our as-

sumptions.
Using Lemma 2.1 we have
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N N np-1 N
2 PnlA = 2 2 (PTB')f_lPTBPYi"JlA + Z (PTBf)”_IPIA
=1 j=1

n=1

N
= ): (PT N TIPTP 1, + Z(PTB Y- ipP1,
=j+

n=1

< X (PT)' 7'PT, ZP"1A+ E(PTB)" p1,.

j=1 n=1 n=

N
But Tz X P'1, = Tgfy < (1 + 8)Sylg. Hence
n=1

N-—-1
P, <(1+06)Sy E (PT3) ™ 'Ply + Z (PTy)' " 'Ply.

i i= n=1

Y- (PTy)y 'Ply £1 by Lemma 22 with n=1. XX (PT)" 'Pl, £
K(K + 1)/20. by Lemma 2.3. (K and « do not depend on N = N,; only B does).
Hence

MZ

n

P, < (14 8)Sy + K(K + 1))2a.

b=

n

Sy 2 Sy,» so by dividing by Sy we have

< KK+ 1D/Q2uSy)+1+6

N N
| Z P 2 uP') |

hence the conditions of Theorem 2.1 are satisfied. Q.E.D.

ReMARK. The definition of By in the proof follows [9, p. 49], where stronger
assumptions are used, with probabilistic arguments replacing our analytic Theorem
2.1. The theorem there is proved only for Harris processes, which we discuss in
the next section.

THEOREM 2.3, Under the conditions of Theorem 2.2, there exists a o-finite
invariant measure A equivalent to m, with A(A) < oo, and there exists a sequence
of sets A;1 X with Ay = A, MA;) < oo, such that for and two probability
measures 11 and v < m and 0 < f,ge L (A4;)

<vP” f >/ 2 P, g> - {AfKA, 8>

lle

Proor: Let BeX with u(B) = ¢.

N K-1 A N+K
P, Y ZPHiz<K X P,

n=1 j=0 n=1

M =

o
n

il
-
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Hence liminfy,, X ¥_, uP"(B) TV, uP"(4) 2 «/K>0 ( T®_, uP(A) =
so ZNIFuP(A)] Y-, uP"(4) - 1).
By the corollary to theorem 3 of Horovitz [3] the existence of A follows,

and 0 < A(4) < 0.
The set A satisfies condition I of [2], ie. if m(E)> 0 there exist M = M(E)

and § = B(E)> O such that £ M  P"1, > p1,. The proof is given in Remark (2)
on Condition I in [2].

Define 4; = {x: X J_oP"l(x) 2 1}. By ergodicity and conservativity 4;} X
Since 4_P", = 1,, we have A(4;) < (j + DA(4) < oo.

Each set A; satisfies condition I of [2] (defined above) by Remark (3) on this
condition in [2]. Theorem 1 of [2] now says that for 0 < f, ge L(4))

lim 2 vPLf >/ 2 vP(A)) = (A.fHIM4))

N-wn=1

lim Z <'1P",g>/ Z nP'(4;) = {4, 8>[4(4)).

N-=w n=1

Since also 1,€L,(4;) we have

lim Z (vP",f)/ E vP(A) = (A fH[AA)

N—-w n=1

lim Z nP"(A)/ Z {nP", gy = (A<, &)

N-w n=1

Using Theorem 2.2 we have X Y_,vP(4)] T ¥_,nP"(A) » 1. Hence

N N N N
SO0 KRR A B i
1A 9

N N N N
DIRC) SN Z_lvP"(A) >_31nP"(A) _21 {nP", &>

n=1
and the theorem is proved.

ReMARkS. (1) If TV_, uP"(B)] T X_, uP"(A) converges for every B < A,
then there exists a o-finite invariant measure 1, by Lemma 2.2 of [6], and A(4) < co.

(2) If there exists a o-finite invariant measure 4 with 0 < A(4) < oo, the
conditions of Theorem 2.2 are not necessarily satisfied. Krengel {5, example 1.1]
has an example of a conservative and ergodic Markov chain on a countable
space where a set A with A(4) < co has two probability measures u,v with
duldi,dv/dlie L (B), A(B) < o, and
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N N N N
limsup X pP*(A)/ X vP"(4) = oo; liminf X uP"(4)] X vP"(4) =0,

N-w n=1 n=1 N-ow n=1 n=1

(3) If A(X) < o the conclusions of Theorem 2.2 follow immediately from
the ergodic theorem, for every AeZ with m(4)> 0.

3. Applications to Harris processes

DeriNniTION 3.1, An ergodic and conservative process is called a Harris process
if for some n > 0 there exists a £ x £ measurable function 0 % g(x,y) = 0 with
fq(x,y)m(dy) =1 ae. and 0 < Q < P", where Q is the integral operator
uQ(y) = [u(x)g(x,y)m(dx). (See [1, theorem V.F]).

By [1, theorem V.C] there is a decomposition P" = Q, + R,, where Q, is
an integral operator and if K is an integral operator with 0 < K £ R,, then
K = 0. A Harris process has Q, # 0 for some n >0, by definition.

LemMMA 3.1. Let P be an ergodic Harris process. Then there exists a set
A e X satisfying the hypothesis of Theorem 2.2, Hence the conclusions of Theorem
2.3 hold.

For the sake of completeness we repeat the proof of [3].

Suppose Q, 5% 0, and let its kernel be g, (x,y). Let E, = {y:q(x,y) = B}.
For some >0, we have

0< mz{(an)iqk(X,J’) = ﬁ} = J m(Ex)m(dx)

Thus for some 6 >0 A={x:m(E,) = 6} has m(4) > 0. Define ¢ = 1-9/2.
m(B) = ¢ implies m(Bn E,) > 6/2 for xe A. Hence for xc 4

PF1y(x) 2 Qulp(x) = L au(x, y)m(dy) zj qi(x, y)m(dy) =z Bo/2.

BnE..

Hence P*1; > f5/21,, so A satisfies our condition with & = péj2and K =k + 1.
Q.E.D.

REMARK. Other sets having the desired property exist by [7, theorem 4]
and [8, theorem 2.1], but those proofs are much more difficult. Metivier’s results
[7, theorem 6] impose some conditions on the measures pu and v, removed by
Theorem 2.3.

As P is not assumed to be induced by a transition probability, uP is defined
only for 4 < m. Thus we cannot put Dirac measures instead of u. The fact that
the results are still true is now shown.
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THEOREM 3.1. Let P be an ergodic Harris process, let A be its o-finite in-
variant measure. If E, F e X with 0 < A(F)< o0, then there exists a A-null set
Z such that for x,y¢Z

lim E P"IE(x)/ ): PM(y) = ME)JAF).

N-w n=1

Proor: Let AeX be a set satisfying the hypothesis of Theorem 2.2 (it exists
by the previous lemma). Let Sy = X)_, mP"(4). For N = N, Sy > 0, and the
proof of Theorem 2.2 shows that X Y_, P"1 (x)/Sy < M a.e., independently
of N.

If P* = Q, + R,, then by theorem V.E of [1] R1(x) |0 a.e., so for k = k,
0, # 0, with kernel g,(x,y).

The functions appearing in the sequel are defined only a.e., and satisfy some
relations a.e. Since there are only countably many functions and countably many
relations, we may take a fixed version of each function and exclude a set Z, with
AZ,) = 0 such that if x ¢ Z, all the functions are defined and satisfy all the needed
relations (equalities, inequalities and convergence).

Take x¢Z,. Given § >0, we can choose k so large such that R,1(x) £ 6,
and hence |Qk1(x) - 1| <4.

Let such k be fixed, and define

vo(A) = f au(x, )m(dy), s0 v, < m, and v(X) = QL(x).
A

v:P'(4) = JP L(»)dvi(y) = [qk(x,J’)P"lA(y)m(dy) = QuP"1(x).

By Theorem 2.2 applied to v, and by the last equality

N
Ok 11’"1A(x)/SN = Z Vi P"(A)/SNN—> v(X) = Q1(x).
N+k N
X P'l(x) = P* 2 P'1,(x) =(Qy+R) X P"1,(x)
n=k+1 n=1 n=1
and hence
N N+k
{ TPLE- T IP"lA(x>}/sN |

+|Qk P"lA(x)/SN 01(¥)| + | @l(x) — 1] +|Re ZP”IA(x)/SNI.
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The second term tends to zero as N — co. The sum of the two last terms is boun-
ded by § + Mé and the first term by 2k/Sy. Thus

N
limsup | X P"L(x)/Sy—1| < 6+ Ms.
n=1

N-ow

This being done for any § >0 yields

N
3 P"1(x)/Sy — 1, and hence for x,y¢Z,

n=1

N N

ZPL(x) T P1y(y)—1.
n=1 n=1

By the Chacon-Ornstein theorem [1, TII.E] (applied to the adjoint process P*
on L;(X,%,4)), if A(E) < o, then for x,y¢Z (and A(Z) = 0)

N N N N
2 P'g(x) 2 Plg(x) X Pl(x) X P'l(y)
n=1 n=1 n=1 n=1

ME)
MYTIO%

N B N N N
2 P'1g(y) 2 P'lx) X P"1,0) Zl P"1g(y)
n=1 n=1 n=1 n=

If A(E) = oo we take E; 1 E with A(E;) < co and use the above result. Q.E.D.

REMARK. This theorem is due to Jain [4], but his proof is based on probabilistic
results. Other proofs are due to Metivier [7] and Levitan [9].

If P is an ergodic Harris process, so is its adjoint process P*. The roles of
measures and functions are interchanged when conditions (and results) for; P*
are expressed in terms of P. In the next theorem we interpret Theorem 2.3 for
P* in terms of P. We see that the conditions on the sets can be relaxed if
some restrictions are imposed on the measures.

THEOREM 3.2. Let P be an ergodic Harris process and A its o-finite invariant
measure. There exists a sequence A;} X with J(A4;) < co such that for any two
sets E and F in Z with J(E), (F) < o0 and any two probability measures ji,v <m
with dpfdA,dv]die L,(A4;)

N N
2 uPYE)] X vP(F) — ME)/MF).
n=1 n=1

Proor. The adjoint process P* is also an ergodic Harris process [1, chapter
VII]. Let A be the set for P* guaranteed by Lemma 3.1 and A; the sequence of
Theorem 2.3 (for P*). Let du/di = f, dvldi = g. If duo/dA = 1g, dvy/dA = 15,
then by Theorem 2.3
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N N N N
T P(E)| TPF) = T uoPf) ] I CoP*g)
Iy 1o(X) A, fH[vo(X) <A, 8> = NE)/AF).

REMARKS. (1) Krengel’s example cited at the end of §2 shows that there may
exist a probability measure # and sets E, B such that the ratios XY_,qnP"(E)/
¥ _.nP"(B) do not converge: Take for P the adjoint of the above example,
dnldL = 1, where A is defined in that example. If du/di = f and dv/dA = g for
that example,

N N N N
Z (aP"f>] T CaPe) = I uP*(A)| T vPHA)

does not converge, and hence there is an E < B (f, g L (B) by the construction,
and A(B) < o) for which XN _ #P"(E)] T¥_,#P"(B) does not converge.

(2) In Theorem 3.2 we have removed the ‘‘boundedness’” assumption of
Metivier on the sets E and F [7]. In Theorem 2.3 we have such an assumption
on the sets, but no restrictions on the measures, while Metivier restricts both
the sets and the measures. Furthermore, in Theorem 2.3 we do not assume that
P is a Harris process.
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