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ABSTRACT 

Let P be a conservative and ergodic Markov operator on L1(X,Z, m). 
We give a sufficient condition for the existence of a decomposition Aj ~" X 
such that for 0 <f,g~Loo(Aj) and any two probability measures # and v 
weaker than m 

2 (vP",g <ktP",f> converges  to  <2,g>/(2,f>, 
n = l  1 

where 2 is the a-finite invariant measure (which necessarily exists). Processes 
recurrent in the sense of Harris are shown to have this decomposition, and 
an analytic proof of the convergence of 

Z P"IA(X) ]~ P" ln(y)  to  2(A)/2(B) 
n = l  n = l  

is deduced for such processes. 

1. Definitions and notations 

Let  (X, Z, m) be a measure  space with re(X) = 1. A Markov process is a posi t ive 

con t rac t ion  P on Lt(X, E, m). P will  be wri t ten to the r ight  of  its var iable ,  while 

its ad jo in t ,  act ing on L®(X, E, m), wil l  be deno ted  by  P and  wri t ten to  the  left 

o f  its var iable .  Thus  <uP,f> = <u, P f> for  f e  L ~ ,  u e L 1. 

By the R a d o n - N i k o d y m  theorem P also  acts on the  Banach  space o f  finite 

signed measures  abso lu te ly  con t inuous  with respect  to m:IzP(A) = fPlad# for  

# ,~ rn, A e X. The  same f o r m u l a  defines # P  for  a a-f ini te posi t ive measure  p ~ m. 

A posi t ive o--finite measure  # is invariant if p P  = # .  

The  process  is conservative if  re(A) > 0 impl ies  ~ , ~ 0 P " l a ( x )  = oo a.e. on A .  

* This paper is a part of the author's Ph.D. thesis prepared at the Hebrew University of 
Jerusalem under the direction of Professor S. R. Foguel, to whom the author is grateful for his 
helpful advice and kind encouragement. 
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The process is conservative and ergodic if re(A) > 0 implies ~ ~=o P"IA(x) = oo 

a.e. 

If A e Z ,  we define the operator T A by uTa(x)= u(x)la(x), so Taf (x )=  

la(x)f(x)  and #Ta(B) = #(A n B). 

The complement of a set A is denoted by A' .  

2. Ratio limit theorems 

THEOREM 2.1. Let P be a conservative and ergodic Marker process, and let 

A e Z  be with m(A) > O. A necessary and sufficient condition for the convergence 

limN_.~ ]~ .=N 1 vP"(A)/~,N.=x qP"(A) = 1 for any two probability measures v and 

q ~ m is: There exists a probability measure # ~ m such that 

lim sup ~ P'IA(x ~ #P"(A) < oo. 
N "--~ oO n ~ 1  n = l  oo 

n A PROOF : Necessity: Take any fixed probability measure #.  ]~, = i #P ( ) = 

by ergodicity, so for N >= N O ] ~ = I # P " ( A ) > 0 .  Define, for N >__ No, 

Z , = l p P " ( A ) .  The sequence ( fN:N > No} defines a fu(x) = Z . = l  P"la(x)/ 

sequence of linear functionals on LI (X ,Z ,m) ,  since fNeL~o(X,Z,m).  Every 

signed measure ~ m is the difference of two positive measures ~ m, so by the 

given convergence, fu is weak-* convergent to 1, hence {]IfNiI®:N > No} is 

bounded. 
Sufficiency: For every v ~ m, the condition implies { ]~ s= lvP"(A)/~, N= l#p,(A ): 

N >= No} is bounded. 

Take a fixed probability measure Vo, and let {N j} be any sequence such that 

]~, = x/~P"(A) converges. We have to show that the limit is one. Z Nj VoW(A) / Nj n = l  

We define on Ll(m),  identified with the space of finite signed measures ~ m, 

a positive linear functional L by a Banach limit 

l;.t L(v) = LIM vP"(A IxP"(A • 
t;.~. 

I Nj  l Nj  

L(vP) = LIM { vP"+ 'o )  l 
~ n = l  l n = l  

= L ( v ) .  
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The last term is zero since ~ ,=°° 1 pP"(A)= oo and Banach limits preserve 

limits. 

But L(v) = S gdv for some g e Loo(X, E, m), and L(vP) = L(v) implies Pg = g. 

The process is conservative and ergodic, hence g is a constant [1, theorem III.A]. 

g =  f gd# = L ( # )  = 1, henceL(v)  = fdv = v(X).  Thus 

N f  / N, 
1 = vo(X) = L(vo) = lim ]~ voP"(A) • #P"(A). 

Nj--*oo n = l  n = l  

Since this holds for every convergent subsequence, the sequence itself must con- 

verge to one. 

REMARK. The conditions on A in the above theorem do not imply the existence 

of a a-finite tnvariant measure: take a process with no such measure and A = X.  

LEMMA 2.1. I f  B e E ,  then for n >  1 

n--1 

P" = Z (PTn,) j- xPTnP"-J + (PTe,)"-*P. 
j=l 

PROOF: An easy induction. For n = 1 the sum is zero, and P = (pTn,)op. 

Using the induction hypothesis and PTB + PTn, = P we get 

n--1 

p.+l = p .p  = E (PTn,/-aPTBP "+l-J + (PTn.)"-~(PTB + PTs,)P 
l = l  

= ~ (PTn,)J-'PTnP "+1-j + (PTn,)"P. 
j=l 

LEMMA 2.2. I f  B e Z ,  then for n > 1 

£ (PTB,)mp"ln = < n. 
m = 0  

PROOF: For n = 1 we have 

N N 

(PTn,)"Pln = Y (PTn,)"P(1 - To,l) =< 1 - (PTn)N+~I =< 1 
m=O ra=O 

and letting N ~ oo the result follows. Continuing by induction 

N N 

Y~ (pTs,)mp +llB = ~ (PTB,)mpTn,PnlB + 
m = 0  ram0 

N 

+ Z (PT,,)mPT, P"I. < n + ~. 
m=O 
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The first term is less than n by the induction hypothesis, the second less than 1 

since TBP"ls < 1B and by our proof  for n = 1. Letting N --+ oo the result follows. 

LEMMA 2.3. I f  A , B e Z ,  r e ( A ) > 0 ,  r e ( B ) > 0  and for some K > 0  and 
m T~ m ~ > 0  ]~K-1P"I 8 > a la  then ]~m=o(P w) P l a  < K ( K +  1)/2~. 

PROOF: 

N N K - - 1  

(PTw)mpIA < a -1 ~, (PTB,)mP ~, pnl s 
m = O  m = O  n = O  

K N K 

= ~-~ E E ( P T w ) " P " I B < a - *  E n  = K ( K + I ) / 2 a .  
n = l  m = O  n = l  

The last inequality is by Lemma 2.2. Let N --+ oo to deduce the Lemma. 

THEOREM 2.2. Let P be an ergodic and conservative Markov process and 

A e E with re(A) > O. I f  there exist a probability measure # <{ m,  an integer 

K > O , an ~ > 0 and O < e < l such that 

K - 1  

#(B)>- ~ ~ Z P n l ~ > a l a  
n = 0  

then for every two probability measures v and ~l 

IV N 

lim E vW(A) /  ~ qP"(A) = 1. 
Iv-+oo n =  l n = l  

PROOF: We have to show that # and A satisfy the condition of  Theorem 2.t.  

Define 5 = e / (1 - e ) ,  hence 5 > 0 .  We denote f~ = E ~ = I P " l a ,  and 
N 

sN = = ffN@. 
The process is conservative and ergodic, hence SN ~' ~ .  We deal with N __> N o 

such that SN > 0. Define B N = {x:fN(x) __< (1 + 5)Sly}. 

SN = f fNdP > f x - . / s d "  > (I + a ) S N # ( X - B I v )  

= (1 + 5)SN[-1 --/~(BN)I. 

Dividing by S N > 0 and solving yields 

#(BN) > 1 -- 11(1 + 5) =5/(1 + 5) = e. 

E . = o P " l B ~ a l a  by our as- For short we shall denote B N by B. Hence r -~  

sumptions. 

Using Lemma 2.1 we have 
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N N n - 1  N 

Z P"ta = ~, ]~ (PTw)s-tPTnP"-Sla + "E (PT~,)"-IPla 
n = l  n = l  j = l  n = l  

N - I  N N 

= Z Z (PTw)J-'PTBpn-JlA+ Z(PTB,)n-IP1.4 
j = l  n = j + l  n = l  

N - 1  N N 

<= (PTB,) -IPT  P"la + Z (PTB,)"-IPL,. 
j = l  n = l  n = l  

N 

But Tn Y~ P"la = TnfN < (1 + 5)SN1B. Hence 
n = l  

N N - I  N 

Z P"IA _--< (1 + 5)Sjv Z (PTB,)~--'P1B + Z (PTB,)"-IPIA. 
n = l  j = l  n = l  

N - 1  j -  • j=I(PTw) 1P1B < 1 by Lemma 2.2 with n = l .  ~N=I(PTB,)"-IP1A < 

K(K + 1)/2~ by Lemma 2.3. (K and g do not depend on N >- No; only B does). 

Hence 

N 

Y, P"I a <= (1 + 5)SN + K(K + 1)/2a. 
n = l  

SN _--> SNo, SO by dividing by SN we have 

N N 

]1 y-' P"la/ 2 ItP"(A) 1J¢0 < K(K + 1)/(2USNo) + 1 + 5 
n = l  n----I 

hence the conditions of Theorem 2.1 are satisfied. Q.E.D. 

REMARK. The definition of BN in the proof follows [9, p. 49-1, where stronger 

assumptions are used, with probabilistic arguments replacing our analytic Theorem 

2.1. The theorem there is proved only for Harris processes, which we discuss in 

the next section. 

THEOREM 2.3. Under the conditions of Theorem 2.2, there exists a a-finite 

invariant measure 2 equivalent to m, with ,~(A) < 09, and there exists a sequence 

of sets A t ~ X with A o = A,  2(Aj)< 09, such that for and two probability 

measures r] and v ~ m and 0 < f, geL~(Aj)  

N N 

Z (vP",f}/  Z (riP", g> --+ (2,f>/(2,  g) .  
n = l  n = l  

PROOF: Let B e Z with /~(B) > e. 

N N K - I  N + K  

a ~P"IA<= Y~ ~,P"+iIB_-<K ~ P " I  8. 
n = l  n = l  j = 0  n = l  



N 

lim Z 
N'-* oo n = l  

N 

lim Z 
N-~ao . = 1  

Since also la e Lo~(Aj) 
N 

lim ~ 
N~oo  n = l  

N 

lim Z 
N~oo  . = 1  

Using Theorem 2.2 we have ~ 

N N 

X <vP",f> < X vP',f> 
n = l  r l = l  
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Hence liminfN_.~ o ]~N lpp,,(B)] N ,=aP (A) oo . = X .  = ,  I~P"(A) ~ a / K  > 0 ( X '~ P~ = 
N+K p n t A , . ~  so z . .  = 1 kt t.a)/2~ .~= 1 ktP"(A) 1). 

By the corollary to theorem 3 of Horovitz [3] the existence of 2 follows, 

and 0 < 2(A) < oo. 
The set A satisfies condition I of [2], i.e. if re(E) > 0 there exist M = M(E) 

and fl = fl(E) > 0 such that ]~ .M=o P"I ~ >__ flla. The proof is given in Remark (2) 

on Condition I in [2]. 

Define A 3 = {x: ]E .J=o PnlA(x) > 1}. By ergodicity and conservativity Aj 1' X.  

Since ] ~ = o P " l a  > 1aj we have 2(Aj) < (j  + 1)2(A)< oo. 

Each set A~ satisfies condition I of [2] (defined above) by Remark (3) on this 

condition in [2]. Theorem 1 of [2] now says that for 0 < f ,  g ~ Loo(Aj) 
N 

(vP",f>] 2~ vP"(A.t ) = (2,f)/2(Aj) 
n = l  

N 

<tiP", g>/ 2~ qP"(Aj) = <2,g>/2(Aj). 
n = l  

we have 

N 

<vP",f>[ Y~ vP"(A) = <2,f>/2(A) 
n = l  

N 

tiP"(A) / ~, <tiP", g> = ),(A)/<2, g> 
n = l  

~.= a vP"(A)/ Z N.= x tiP"(A) ~ 1. Hence 

N N 

X vP"(A) X tiP"(A) <2,f>2(A) 
n = l  n = l  

N N N N 

X <qP",g) X vP"(A) X qP"(A) X <nP",g> 
n = l  n = l  n = l  n = l  

and the theorem is proved. 

2(A)(2,g> 

Y~,=lltP"(B)/ pP"(A) converges for every B c A REMARKS. (1) If  N N 

then there exists a a-finite invariant measure 2, by Lemma 2.2 of [6], and 2(A) < oo. 

(2) If  there exists a a-finite invariant measure 2 with 0 < 2(A)< oo, the 

conditions of Theorem 2.2 are not necessarily satisfied. Krengel t-5, example 1.1] 

has an example of a conservative and ergodic Markov chain on a countable 

space where a set A with 2(A)< oo has two probability measures #,v with 

dl~/d2, dv/d2 ~ Lo~(B), 2(B) < oo, and 
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N N N N 

lim sup ~ I~P"(A)/ ~ vP"(A) = ~ ;  l iminf E #P"(A)/ ~ vP"(A) = O. 
N ~  n = l  n = l  N ~ o o  n = l  n = l  

(3) If 2(X) < ~ the conclusions of Theorem 2.2 follow immediately from 

the ergodic theorem, for every A s E with re(A)> O. 

3. Applications to Harris processes 

DEFINITION 3.1. An ergodic and conservative process is called a Harris process 

if for some n > 0 there exists a Y x Y, measurable function 0 ~ q(x, y) >__ 0 with 

fq(x,y)m(dy) __< 1 a.e. and 0 __< Q =< pn, where Q is the integral operator 

uQ(y) = ~u(x)q(x,y)m(dx). (See [1, theorem V.F]). 

By [1, theorem V.C] there is a decomposition P"= Q, + Rn, where Qn is 

an integral operator and if K is an integral operator with 0 < K < R, ,  then 

K = 0.  A Harris process has Q, # 0 for some n > 0, by definition. 

LEMMA 3.1. Let P be an ergodic Harris process. Then there exists a set 

A E E satisfying the hypothesis of Theorem 2.2. Hence the conclusions of Theorem 

2.3 hold. 

For the sake of completeness we repeat the proof  of [3]. 

Suppose Qk # 0, and let its kernel be qk(x,y). Let Ex = (y:qk(x,y) _--> fl}. 

For some fl > 0, we have 

0 < m2((x,y):qk(x,y) >_ fl} = j" m(Ex)m(dx ). 

Thus for some c5>0 A = { x : m ( E x ) >  6} has m(A)>O. Define e = 1 - ~ / 2 .  

re(B) > ~ implies m(B n Ex) > 3/2 for x e A. Hence for x e A 

PklB(x) > Qkln(x) = f qk(x,y)m(dy) >= f qk(x,y)rn(dy) > tiff/2. 
JB JB hE. .  

Hence P~ln > fl6/2 l a ,  so A satisfies our condition with c~ = tiff/2 and K = k + 1. 

Q.E.D. 

REMARr:. Other sets having the desired property exist by [7, theorem 4] 

and [8, theorem 2.1], but those proofs are much more difficult. Metivier's results 

[7, theorem 6] impose some conditions on the measures # and v, removed by 

Theorem 2.3. 

As P is not assumed to be induced by a transition probabili ty,/zP is defined 

only for # ~ m. Thus we cannot put Dirac measures instead of # .  The fact that 

the results are still true is now shown. 
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THEOREM 3.1. Let P be an ergodic Harris process, let 2 be its a-finite in- 

variant measure. I f  E, F e Z  with 0 < 2(F)< ~ ,  then there exists a 2-null set 

Z such that for x, y (~ Z 

N N 
lim ~ P"IE(x)/ ~ P"IF(y) = 2(E)/2(F). 

N--* oo n = l  n = l  

PROOF: Let A e Z be a set satisfying the hypothesis of Theorem 2.2 (it exists 

by the previous lemma). Let SN = ~,= 1 mP"(A). For N > No SN > O, and the 

proof of Theorem 2.2 shows that ~ ,=~v 1P"Ia(x)/SN =< M a.e., independently 

of N. 

If P~ = Qk + Rk, then by theorem V.E of [1] Rkl(X)~0 a.e., so for k > ko 

Qk ~ 0, with kernel qk(x,y). 

The functions appearing in the sequel are defined only a.e., and satisfy some 

relations a.e. Since there are only countably many functions and countably many 

relations, we may take a fixed version of each function and exclude a set Zo with 

2(Zo) = 0 such that if x ~ Zo all the functions are defined and satisfy all the needed 

relations (equalities, inequalities and convergence). 

Take x ~Zo. Given 6 > 0, we can choose k so large such that Rkl(x ) < 6, 

and hence l Qkl(x)- 1[ < 6. 

Let such k be fixed, and define 

f qk(x,y)m(dy), so vx "~ m, and vx(X) = Qkl(X). Y x ( A )  
J A 

v~P"(A) = f P 1A(y)dvAy) = f q&,y)P"la(y)m(dy) 

By Theorem 2.2 applied to vx and by the last equality 

and hence 

= QkP"IA(x). 

17 N 

Qk Z P"IA(x)/SN = Z vxP"(A)/SN ~ vx(X) = Qkl(X). 
n = l  ,I=1 N ~ m  

N+k N N 
]g P"la(x) = pk • p,1A(x ) = (Qk + Rk) E P"IA(x) 

n = k + l  n = l  n = l  

N N N+k ) ~ / S N I  

t l 
N N 

+ [Qk ~, P"la(x)/SN - Q:(x) I + [ Q,l(x) - 11 + I Rk X P"IA(x)/SN [. 
n = l  n = l  
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The second term tends to zero as N ~ oo. The sum of the two last terms is boun- 

ded by 5 + M5 and the first term by 2k/SN. Thus 

N 

lim sup I ~" P" la(x)/SN - 11 < 6 + M6.  
N--+~  I n = ]  

This being done for any 6 > 0 yields 

N 

~, P"IA(X)/S N -~ 1, and hence for x, y q~ Zo 
n = l  

1~ P"la(x P"IA(y ) ~ 1. 
n = l  

By the Chacon-Ornstein theorem [1, III.E] (applied to the adjoint process P* 

on LI(X,  E,2)) ,  if 2(E) < oo, then for x, y ¢ Z (and 2(Z) = 0) 

N N N N 

Z P"IE(x) ]~ P"IE(x) ]~ P"IA(X) Z P~IA(y) 2(E) 
n = l  n = l  n = l  n = l  

N N N N 2(F) 
o 

Z P"IF(y) ]~ P"la(x) ]~ P"lA(y) E P"IF(y) 
n = l  n = l  n = l  n = l  

If  2(E) = oo we take Ej ~ E with 2(E j) < oo and use the above result. Q.E.D. 

REMARK. This theorem is due to Jain [4], but his proof  is based on probabilistic 

results. Other proofs are due to Metivier [7] and Levitan [9]. 

If  P is an ergodic Harris process, so is its adjoint process P*.  The roles of 

measures and functions are interchanged when conditions (and results) fori P* 

are expressed in terms of P .  In the next theorem we interpret Theorem 2.3 for 

P* in terms of P .  We see that the conditions on the sets can be relaxed if 

some restrictions are imposed on the measures. 

THEOREM 3.2. Let P be an ergodic Harris process and 2 its a-finite invariant 

measure. There exists a sequence Aj ~ X with 2(A j) < oo such that for  any two 

sets E and F in Z with 2(E),2(F) < oo and any two probability measures Iz, v ~ m 

with d#/d2, dv/d2 ~ Loo(Aj) 

N N 

E laP"(E)/ Z vP"(F) --+ 2(E)/2(F). 
n=l n = l  

PROOF. The adjoint process P* is also an ergodic Harris process [1, chapter 

VIII. Let A be the set for P* guaranteed by Lemma 3.1 and Aj the sequence of 

Theorem 2.3 (for P*).  Let d#/d2 = f ,  dv/d2 = g. If dido~d2 = le,  dvo/d2 = 1F, 

then by Theorem 2.3 
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N N N N 

Z # P ' ( E ) /  Z vP"(F) = Z ( t z o P * ' , f ) /  Z ( v o P * ' , g )  
n = l  n = l  n = l  n = l  

- -  go(X) < 2 , f ) / v o ( X )  <~, g )  = 2(E)/2(F) .  
N--* oo 

REMARKS. (1) Krengel 's  example cited at the end of §2 shows that there may 

~ P~'E" exist a probabili ty measure r/ and sets E , B  such that the ratios ~ n=lr/ ( ) /  
N n B ~n=l~/P ( ) do not converge: Take for P the adjoint of the above example, 

drl/d2 = 1 a where A is defined in that example. I f  d#/d2 = f and dv/d2 = g for 

that  example, 

N N N N 

Z (rIP n, f ) /  X (riP n, g )  = ~, pP* ' (A) /  ~, vP* ' (A)  
n = l  n = l  n = l  n = l  

does not  converge, and hence there is an E c B ( f ,  g ~ L ~ ( B )  by the construction, 

and 2 ( B ) <  oo) for which E~=I~IP~(E)/  E~=I~/P ' (B)  does not converge. 

(2) In Theorem 3.2 we have removed the "boundedness"  assumption of 

Metivier on the sets E and F I-7]. In Theorem 2.3 we have such an assumption 

on the sets, but no restrictions on the measures, while Metivier restricts both 

the sets and the measures. Furthermore, in Theorem 2.3 we do not assume that 

P is a Harris process. 
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